Projects

Sensor Security of LiDAR in Autonomous Vehicles (2018-Present)

LiDAR sensors are used as a foundation of perception in Autonomous Vehicle prototypes. But the data acquired by LiDAR have been shown to be affected by a variety of physical phenomena. If a malicious agent can perform these physical attacks, they can potentially cause a collision and threaten the safety of the passenger. If we can discover what capabilities an attacker may possess with these attacks, we can develop ways to defend against them.

LiDAR

Firmware Obfuscation for Embedded Devices (2018-2019)

Due to limited resources, embedded devices have limited protection against cloning and firmware extraction. To help prevent this kind of attack, an obfuscation technique was developed to rearrange the order of instructions in the firmware. Using a small cache, a real device can reconstruct the firmware. Without the correct Device ID, it will be difficult for a cloned device to reconstruct the firmware.

Firmware Extraction

Optimal Sampling for Sensing Systems (2017-2019)

There are sampling policies that maximize the information and minimize the delay provided by every sample in a sensing system. Depending on the distribution of network transmission times and the penalty of delayed samples, zero-wait or uniform-wait policies are far from optimal. In fact, threshold policies that account for the penalty and expected transmission time will often give much better results.

AoI